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Abstract

This report describes the development and testing of a new method for extrapolating short-
term creep rupture test data to predict long-term rupture strength. The goal of this work
is to reduce the time required to qualify new materials for nuclear service by reducing the
lead time required for dedicated, long-term material testing to establish key long-term ma-
terial properties. The new approach described here uses a physics-based model to predict
the long-term creep rupture strength of 316H stainless steel using only short-term test data.
The key idea is to use Bayesian inference to find the statistical distribution of the model pa-
rameters that best explain the short-term rupture data. Because the model is physics-based
these parameters are all microstructural quantities that can be measured through detailed
material characterization experiments. The Bayesian prior distributions provide a means
for incorporating this characterization data into the final model to improve the accuracy
of the long-term model predictions. However, where such data is not available the process
still produces an accurate model based on an uniformed prior. Our hypothesis is that this
approach more accurately extrapolates the short-term test data when compared to current,
empirical methods. The report proves this hypothesis using actual long-term rupture data
available for 316H, including tests with rupture times greater than 200,000 hours. The gen-
eral approach developed here could be applied to other materials and other time-dependent
material properties. Applying this new technique to develop long-term qualified material
properties, potentially in conjunction with other accelerated qualification approaches like
staggered qualification test programs, could greatly reduce the time required to qualify new
materials for nuclear service.
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1 Introduction

1.1 Background

This report describes a new approach for qualifying long-term, time-dependent material
properties for high temperature nuclear reactor structural materials. Specifically, the work
described here focuses on extending the extrapolation window for creep rupture strength
data to accelerate the qualification of new materials for nuclear service [1]. Creep rupture is
a critical failure mode for future high temperature reactors [2], one that often limits the life
of reactor structural components. By definition, creep rupture strength is a time-dependent
property and requires long-term creep testing to establish reliable, qualified material data.
Current material qualification approaches rely on a dedicated, long-term creep test program
to produce data to fit an empirical model. Most codes and standards allow some limited
extrapolation in time outside the direct test data using a time-temperature parameter [3–6]
to trade higher temperature testing for shorter test times. However, as these approaches use
empirical models to correlate and extrapolate the data they limit the allowable amount of
extrapolation. For example, the ASME Boiler & Pressure Vessel Code Section III, Division 5
rules covering the design and construction of high temperature reactor structural components
limits the allowed extrapolation to a factor of 3 to 5 in time, as described in Section III,
Division 5, Subsection HB, Subpart B, Appendix HBB-Y. Many reactor designs call for 30
or even 60 year initial design lives in order to amortize plant capital costs. Given these
targets, a minimum full-life qualification program would require creep rupture testing with
times from 6 to 20 years before a new material could be entered into service.

While other factors also contribute to prevent rapid nuclear material qualification, this
requirement for dedicated long-term test programs for critical time-dependent properties is
currently one of the most unavoidable factors limiting the time between material discovery
and qualification. Moreover, maintaining test programs of this type can be difficult, as it
requires a substantial expenditure to maintain the program over a long period of time.

The current qualification approach relies on time-temperature parameters to trade tem-
perature for time in extrapolating creep test results. Figure 1.1 illustrates the process using
the Larson-Miller parameter applied by ASME [3]. The approach requires a large, long-term
creep rupture database providing the test stress and temperature linked to the corresponding
creep rupture time. This database should sample several commercial heats of the material,
ASME requires at least three heats, so that the data is representative of a random future heat
of material used in constructing the component. The approach correlates the Larson-Miller
parameter

LMP = T (log10 tR + C) (1.1)

with T the absolute temperature, tR the creep rupture time, and C the Larson-Miller pa-
rameter, which unifies the effects of time and temperature to the log of the experimental
stresses. The basic Larson-Miller approach selects a polynomial order based on the data
and finds the polynomial interpolation of that order and value of C that best fits the data.
Other approaches apply different time-temperature parameters, but the basic idea remains
the same.

Figure 1.2 illustrates three potential problems with this basic version of time-temperature
parameter correlation: overfitting, unreasonable extrapolation, and inability to capture a
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Figure 1.1: Example of traditional Larson-Miller correlation against creep rupture data.
This example applies a quadratic polynomial regression linking the Larson-Miller parameter
to the log of the rupture stress. This regression model, along with the associated prediction
interval shown on the plot, can be used to calculate extrapolated design minimum stress to
rupture data.

mechanism shift. Of these three, overfitting is uncommon as typically low order polynomials
are sufficient to match the data. However, the other two pathological conditions are common
and are the primary reason why time extrapolation limits are required to ensure accurate
long-term creep rupture predictions.

More sophisticated versions of the time-temperature parameter correlation approach in-
clude region split methods [7], which attempt to capture mechanism shifts using a piecewise
polynomial correlation, with a breakpoint at the time/temperature location of the shift.
This technique is only effective if the experimental conditions capture the mechanism shift
— it does not work if the mechanism shift only occurs at times/temperature beyond the
test conditions but potentially within the design life of the component. Moreover, the region
split approach introduces additional user-selected hyperparameters, specifically the number
and location of the breaks, which can potentially lead to overfitting.

This report describes a new approach to correlating and extrapolating creep rupture
data. The goal is to extend the extrapolation window to reduce the number and duration
of creep rupture tests required to qualify a material for a 30 or 60 year life. The new ap-
proach correlates creep rupture data using a physics-based, microstructural model for creep
deformation and failure [8]. This model uses a Crystal Plasticity Finite Element (CPFE)
approach to discretize the microstructure of the material and capture key aspects of the
material structure. A single crystal model captures the details of grain bulk deformation,
linking bulk creep to the underlying physical mechanisms of dislocation motion, precipitate
hardening, solid solution strengthening, and bulk vacancy diffusion causing the deformation.
The CPFE model includes a grain interface-cohesive model [9–13] to represent grain bound-
ary sliding and diffusion assisted creep-cavitation and eventual grain boundary failure. The

ANL-21/34 2
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Figure 1.2: Example of three potential problems with empirical time-temperature (Larson-
Miller) correlations. All three figures use a consistent labeling scheme where circles represent
data, the line represents the model, black indicates time/temperature data within the exper-
imental database used to calibrate the model, and gray indicates time/temperature points
outside the model database (for example, points generated later after additional test time).

authors and others have used similar models to accurately predict creep deformation and
failure in a variety of materials [14–16]. Physics-based models can be more accurate in pre-
dicting long-term material behavior outside the test database. For example, models of this
type can capture mechanism shifts induced by a transition from dislocation to diffusional
creep in the grain bulk [17].

One key aspect of physics-based models is that the model parameters all have a physical
meaning. For example, the grain boundary model parameters include the grain boundary
diffusivity, the initial spacing of the cavity nucleation sites, related the grain boundary
precipitate spacing, the grain boundary viscosity, etc. In theory, microstructural experiments
and characterization could determine these parameters directly, without the need to correlate
to creep deformation or rupture data. However, in practice building multiscale models of
this type is difficult, particularly as the required microstructural data is often not available.

Instead, notionally, the approach developed here calibrates the microstructural parame-
ters using Bayesian inference [18, 19] against short-term creep test data. This approaches
finds the statistical distribution of the model microstructural parameters that best explains
the observed macroscale test data. Our hypothesis is that because the underlying model
is physics-based the resulting calibrated model will accurately extrapolate to long-term
conditions, even if only calibrated against short term data. Specifically, we predict that
a physics-based model of this type will extrapolate more accurately in time than current time-
temperature parameter approaches, allowing for an increased time-extrapolation window and
reducing therefore reducing the amount and time of long-term testing required to qualify a
material.

Moreover, as the model parameters are all notionally measurable microstructural quanti-
ties with definite meaning, the prior distributions used in the inference provide a natural way
to incorporate any available microstructural information on the material. These informed
priors help constrain the calibrated parameter distributions to remain physically-reasonable
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Figure 1.3: Flow chart demonstrating the framework described in this report for extrapolat-
ing short-term creep rupture data to predict long-term failure.

while still allowing the model to adapt to the available macroscale test data.

One complication to this approach is that the CPFE model is too numerically expensive
to use directly in the inference process. Instead, we first generate a large database of simula-
tion results, specifically creep curves and the associated rupture times, for grid of parameters
including stress and the key model microstructural parameters as identified in a sensitivity
study. Then, we fit a deep neural network surrogate model to this data, which maps stress
and the key microstructural parameters to the resulting rupture time. This surrogate model
is fast enough to use in the Bayesian inference step. As the surrogate model is quite accurate
this extra step does not detract from the key idea of extrapolating using a physically-based
model – basically the surrogate model perfectly reproduces the CPFE data. Figure 1.3 out-
lines the complete model development process used here to predict long-term creep rupture
strength.

One additional advantage of the Bayesian inference approach is that the final model is
statistical – it predicts not only the expected average rupture strength but also the expected
distribution of strengths. This information is critical for developing design material data,
which are often based on statistical lower-bounds of the expected heat-to-heat variation in
the material properties.

Finally, this proposed approach is compatible with other strategies for accelerating ma-
terial qualification. For example, one potential idea is a staggered qualification approach
(see Fig. 1.4). Staggered qualification is compatible with the current restrictions on time
extrapolation. Even with these factors, for short qualified design lives the required creep-
rupture testing does not take long. For example, one year tests could support a five year
qualified life. The staggered approach starts the required time-dependent testing, both long-
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Figure 1.4: Illustration of a staggered test program providing increasing, leading qualified
time-dependent properties.

and short-term, all at once. However, rather than waiting for all tests to finish to support
a long 30 or 60 year qualified life instead the staged approach qualifies the material incre-
mentally for longer and longer design lives as data comes in. So, for example, one year tests
support an initial five year life. When the two year tests results are available the approach
extends the qualified life to 10 years and so on. This approach would allow plant designers
and operators to start operation based on the initial, short-term qualified properties. As
long as the test program schedule provides new data before the old qualified life expires the
staggered program would provide the data required for ongoing reactor operations, out to or
beyond a 30 or 60 year target design life. However, if the plant designer wanted to eventually
achieve these long target design lives, they would need to design the components initially
with expected 30 or 60 year design material properties, not the initially-qualified short-term
properties. These initial long-term predictions could be aggressively extrapolated, as they
would not be the actual, qualified properties. If the later test data supports these initial
properties (i.e. the material is at least as strong as initially predicted) components operating
under such a staggered qualification program would be acceptable. The risk for the plant
operator is that the later test data may not support the initial predictions, meaning the
qualified component life would be shorter than expected, the component would need to be
retrofitted, plant operations altered to reduce the load on the component, etc.

The physics-based method described here is compatible with a staggered approach to
qualification as it could provide the initial, aggressively extrapolated design properties with
better accuracy than a conventional time-temperature extrapolation. Introducing physics-
based modeling to codes and standards at the same time as a staggered qualification method
could ease the adoption of the new modeling technique, as the staggered test program would
provide a conventional backstop for the simulation results. The ongoing accuracy of the long-
term predictions against the test data would then also provide evidence of the effectiveness
of the new modeling and simulation based approach described here, potentially meaning the
next qualified material would not require ongoing testing.

ANL-21/34 5
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While the current report focuses on creep rupture as a key material property for next
generation high temperature reactors, the general approach detailed here could be applied
to other time-dependent material properties like thermal aging, creep deformation, and even
environmental effects like corrosion and radiation damage. The general strengths of the
method — better accuracy in long-term extrapolation and a direct connection to the material
microstructure — similarly apply for these types of material property predictions.

This report demonstrates the application of this new physics-based time extrapolation
approach to predict the long-term creep rupture strength of 316H stainless steel. 316H is al-
ready a qualified ASME material for high temperature nuclear components, supported by an
extensive long-term testing database extending beyond 200,000 hours [20]. We selected this
material specifically because the ground truth creep data is available – this allows for a direct
comparison of the long-term creep rupture strength predicted by the new approach based
on a limited set of the rupture database (for example, limiting the inference process to rup-
ture data with durations less than 15,000 hours), against actual long-term test results. This
approach of demonstrating the potential predictive power of physics-based models against
existing material test data is one way to build confidence in the new extrapolation method.

The results here demonstrate that the new, physics-based approach can in fact accu-
rately extrapolate short term creep rupture data to long-term predictions. Moreover, we
demonstrate that this new modeling approach is substantially more accurate than simple
time-temperature parameter extrapolation from the same database.

1.2 Organization

Chapter 2 describes the implementation of a physically-based model for 316H developed by
Hu and Cocks [14] into a MOOSE-based CPFE framework. This model is completely phys-
ically based in that it decomposes the strength opposing dislocation creep in the grain bulk
into four mechanisms, each of which has a direct connection to some underlying microstruc-
tural property of the material. Our original plan was to use this model to represent the
grain bulk deformation in 316H, combined with the existing grain boundary model. How-
ever, due to a delay in the start of the work we instead proceeded in parallel generating
the throughput simulation database and surrogate model using a simpler, but still physi-
cally based creep model, already implemented in the MOOSE CPFE framework. Chapter 3
describes this model along with a description of the throughput simulation database. Chap-
ter 4 then describes the process of fitting a surrogate model to the data and completing
the model by calibrating property distributions using Bayesian inference against the time-
limited 316H rupture database. This chapter demonstrates the ability of the final model to
accurately predict long-term creep rupture and contrasts the accuracy of the new approach
against conventional time-temperature extrapolation. Finally, Chapter 5 summarizes the
work described here and details future work on applying this new approach to accelerate the
qualification of new nuclear structural materials.

ANL-21/34 6
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2 Hu and Cocks model for 316H

2.1 Model description

This chapter describes a single crystal, physics-based model for the creep deformation of
316H stainless steel developed by Hu and Cocks and details its implementation in a MOOSE-
based CPFE framework. Hu et al. (2020) [21] and Hu’s dissertation [22] describe the model
in sufficient detail to reimplement the model. The model evolved over time as the authors
added improvements. The version implemented here follows [21] with some changes described
below.

The model represents dislocation creep in 316H as affected by three time-temperature
dependent strengthening mechanisms:

1. Dislocation forest hardening

2. Precipitate strengthening caused by the Laves (Fe2Mo) and carbide (Cr23C6) phases

3. Solid solution strengthening caused by Cr, C, and Mo.

In addition, the full model includes a backstress contribution to flow caused by dislocation
pileups and the effect of solute drag on the material flow rate. Neither of these mechanisms
are included in the version implemented here as both have a relatively small effect on the
creep response of 316H.

We implement the single crystal model in NEML, a material model library developed at
Argonne National Laboratory. NEML is in turn connected to MOOSE, where we execute
the CPFEM modeling discussed in Chapter 3. NEML provides a framework for embedding
a slip system model into general crystal plasticity kinematics. For a general description
of the kinematic framework see [8, 23, 24] or the NEML documentation at http://neml.

readthedocs.io. To implement the model then we only need to implement the slip-system
level slip rate and hardening models.

The following provides a mathematical description of the model. Tables 2.1-2.3 define
the parameter values.

2.1.1 Slip rate

The slip rate equation is

γ̇i = γ̇0 exp

[
−∆F0

kT

(
1−

∣∣∣∣ τi
τCRSS,i

∣∣∣∣c)d
]

sign (τi) (2.1)

where γ̇i is the slip rate on system i, γ̇0 is the reference slip rate,

∆F0 = α0G0b
3, (2.2)

with G0 the shear modulus at absolute zero, b the Burgers vector, and α0, c, and d are
parameters describing the energy barrier against climb-assisted dislocation glide, k is the
Boltzmann constant, T the absolute temperature, τi is the resolved shear on system i, and
τCRSS,i is the slip resistance.
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The slip resistance on each system is the sum of three terms representing forest hardening,
precipitation hardening, and solid solution strengthening

τCRSS,i =
√
τ 2d,i + τ 2p + τs (2.3)

with τd,i the forest hardening strength on system i, τp the precipitation hardening strength,
and τs the solid solution strength. The precipitation and solid solution strengthening terms
are coupled, as the growth of precipitates pulls atomic species out of solution. These terms
combine the hardening effects of the Laves and carbide phases. Each slip system has its
own value of the forest hardening term but they all share the same precipitation and solid
solution strengths.

2.1.2 Dislocation hardening

The dislocation forest hardening model is fairly standard, combining both self- and latent-
forest hardening with thermally-activated recovery. The strength is given in terms of the
dislocation spacing on the slip plane:

τd,i =
αdGb

Ld,i

(2.4)

with αd the interaction coefficient, G the temperature-dependent shear modulus, and Ld,i

the dislocation spacing. The dislocation spacing evolves with the differential equation

L̇d,i = −L3
d,i

(
J1 |γ̇i|+ J2

∑
j 6=i

|γ̇j|
)

+
K

L3
d,i

(2.5)

with J1 the self hardening coefficient, J2 the latent hardening coefficient, and K a tempera-
ture dependent parameter describing dislocation recovery.

2.1.3 Precipitation/solid solution hardening

The following derivation presents a general form the model. The model tracks a number of
precipitate phases indexed by i. The model describes these phases with the average radius ri,
the number volume density Ni, and the volume fraction fi. Only two of these free parameters
are independent but the model evolves the rate equations for all three to help with numerical
stability. The growth of each precipitate phase is in turn controlled by the concentration of
one or more key atomic species in the solid solution, indexed by j with mass fractions cj.
However, the chemical concentrations for non-competing precipitation reactions (see below)
are directly related to the precipitate volume fractions, so the model only maintains three
internal variables per precipitate phase: ri, Ni, and fi.

The model represents two precipitation growth regimes. The first stage is diffusion-
controlled Zener growth. Here is the concentration of the relevant species in solution are
above their equilibrium concentrations for the current metal temperature and they will diffuse
out of solution into the precipitates. This stage continues until one of the species contributing
to the reaction reaches its thermodynamic equilibrium concentration in solution. At this

ANL-21/34 8



An initial framework for the rapid qualification of long-term creep rupture strength via microstructural

modeling
September 2021

point no new precipitates can nucleate but the existing precipitates can continue to grow
with larger precipitates absorbing smaller precipitates through Ostwald ripening.

In the growth regime the slowest diffusing species limits the nucleation and growth rates.
The species that reaches its thermodynamic equilibrium concentration first controls growth
saturation and the switch to the ripening mechanism. The particular model for 316H only
tracks the concentration of Mo for the Laves phase, as there is ample iron, but tracks both
C and Cr for the Cr23C6 carbides. For the carbides the diffusion of Cr limits the growth and
nucleation rate but the concentration of C controls the switch to Ostwald ripening.

The internal variables in the final model are coupled in two ways:

1. During the growth phase precipitation pulls the relevant species out of solution and into
the precipitates. This increases precipitation hardening but decreases solid solution
strengthening. Precipitate growth is therefore directly coupled to the element volume
fractions in solution and all atomic species contributing to a particular precipitation
reaction are likewise coupled.

2. The model sums up the contributions of all precipitate phases into a single slip re-
sistance for precipitation hardening. Likewise, the model sums up the solid solution
strengthening contributions of all tracked atomic species in the solution.

In theory, the same element in solution could contribute to multiple precipitation reactions
and those reactions would compete for in pulling that element out of solution and into
precipitates. This does not occur for the particular 316H model but could be added to the
model relatively easily to support other materials.

The precipitate hardening strength is defined as

τp =
αpGb

Lp

(2.6)

with αp the interaction coefficient and

Lp =

√
1∑

i 2riNi

. (2.7)

The solid solution strength is defined as

Ls =

√
1

b
∑

j
cj

vm,i

(2.8)

where vm is the molecular volume of the precipitate phase.
In the current implementation the precipitation reactions are independent from one an-

other. As such, the subsequent exposition drops the index i representing each precipitate
phase. The final model maintains and evolves one set of internal variables according to the
subsequent system of coupled ordinary differential equations for each precipitate phase.

The chemical concentrations of the specifies contributing to each precipitation reaction
are linearly related to the precipitate volume fraction:

cj =
c0,j − fcp,j

1− f (2.9)
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with c0,j the initial concentration in solution and cp is the concentration in the precipitate.
The dominate mechanism switches from growth to ripening based on the current volume
fraction of the key species, i.e. the model is in the growth regime when

cj < ceq,j (2.10)

with ceq, j the equilibrium concentration for all species contribution to a given precipitation
reaction. The model is in the growth regime when

cj = ceq,j. (2.11)

The ODEs controlling the growth and nucleation of each precipitate then have two separate
rates: one for the growth phase and a second for the ripening phase.

Finally, the Gibb’s free energy driving precipitate growth is

Gv = −kT
vm

ln
ceff
ceff,eq

(2.12)

with
ceff =

∏
j

cj. (2.13)

The temperature sensitivity of the controlling diffusivity for each reaction follows an Arrhe-
nius model

D = D0 exp

(−Q0

RT

)
(2.14)

with D0 the reference diffusivity, Q0 an activation energy, and R the gas constant.
Given this setup, the evolution equation for the precipitate radius in the growth phase is

ṙgrowth =
D

r

cj − ceq,j
cp,j − ceq,j

+
Ṅgrowth

N
(rc − r) (2.15)

where
rc = −2

χ

Gv

(2.16)

with χ the interface energy, Ṅgrowth the nucleation rate in the growth regime, defined below,
and the concentration cj is the concentration for the diffusion rate-limiting species in the
reaction. In the ripening regime the radius growth rate is

ṙripening =
M

3r2
(2.17)

with

M = Cf
8χVmDcj

9RT
(2.18)

where Vm is the molar volume, Vm = Navm with Na Avogadro’s number, and Cf is a
coarsening reduction factor linked to an increase in solubility of C in the matrix linked to
the Laves phase growth.
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The nucleation rate (i.e. the rate of change of the number volume density) in the growth
regime is

Ṅgrowth = N0Zβ exp

(
−G

∗

kT

)
(2.19)

with

G∗ =
16πχ3

3G2
v

(2.20)

and

Zβ =
2vmDcj
a4m

√
χ

kT
(2.21)

with cj again for the rate limiting species and am the FCC lattice parameter. In the ripening
regime the nucleation rate is

Ṅripening = −3N

r
ṙripening. (2.22)

Finally, for both the growth and ripening regimes the volume fraction evolution equation
is

ḟ =
4

3
π
(
Ṅr3 + 3Nr2ṙ

)
(2.23)

which is simply the rate of the simple geometric relation

f =
4

3
πr3N. (2.24)

In the ripening regime the nucleation rate is negative and the radius growth rate is
positive, implying that the larger precipitates cannibalize the smaller precipitates. The
overall volume fraction rate is zero, meaning the total precipitate volume remains constant.

Three types of parameters define the model, given the Tables 2.1-2.3:

1. Basic physical constants which would not vary with heat-to-heat material variation in
the material structure (Table 2.1)

2. Mechanism-specific kinematic quantities like diffusivities, activation energies, etc. which
may vary somewhat heat-to-heat but likely not significantly (Table 2.2).

3. The initial conditions for the internal variables, which in turn controls the initial dislo-
cation density, precipitate distribution, and solid solution chemistry (Table 2.3). These
quantities certainly vary between heats of materials and would be the primary target
for calibrating a physically-based model to explain variations in the resulting creep
rupture test data.

The unit system is compatible with units of megapascals for stress, Kelvin for temperature,
and seconds for time.

In the current implementation the initial carbide and Laves phase radius and volume
fraction are set to essentially initialize the model to have zero of either phase precipitated at
the start of the simulation. This could easily be adjusted to account for the initial carbides
present in 316H.
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Parameter Description Phase/element Value Units
Ld Dislocation spacing n/a 1.0× 10−7 m

r Precipitate radius
Carbide 1× 10−9

m
Laves 1× 10−9

f Precipitate phase fraction
Carbide 4.19× 10−16

n/a
Laves 4.19× 10−16

c Initial chemical concentration
Cr 16.25

wt%C 0.0375
Mo 2.33

Table 2.3: Physical parameters that will vary significantly heat-to-heat. Note that the
precipitate number density would also need to be initiated, but could be done using Eq.
2.24 based on the values of radius and phase fraction given here.

2.2 Implementation in NEML

The numerical implementation in NEML differs somewhat from the basic presentation of the
model described above, drawn from the original sources cited in the previous section. The
goal of these changes was to improve the performance of the model as implemented in CPFE
simulations. Specifically, NEML integrates the system of ODEs defining the model state
with a fully implicit scheme. The original authors decoupled the integration of the crystal
plasticity kinematics and some of the internal variables. The fully implicit integration in
NEML improves the stability of the model and simplifies the calculation of the algorithmic
tangent, needed to achieve quadratic convergence in CPFE simulations.

The first change is rather than switch between the growth and ripening regimes abruptly
when the critical element reaches the equilibrium concentration in solution, instead the model
uses a weighted sum of both the growth and ripening rates, i.e.

ṙ = f(cj)ṙgrowth + (1− f(cj))ṙripening (2.25)

and
Ṅ = f(cj)Ṅgrowth + (1− f(cj))Ṅripening (2.26)

where

f (cj) =

{
cj−c0,j

ceq,j−c0,j cj ≤ ceq,j

1 cj > ceq,j
(2.27)

This mixes in the two mechanisms in proportion to how close the critical species concentra-
tion is to the equilibrium concentration. As the critical element approaches the equilibrium
concentration in the solution the ripening mechanism becomes more dominant over the
growth mechanism, until when the critical species reaches equilibrium the evolution rate
is equal to the ripening mechanism rate. This modification approximates the hard switch
between mechanisms in the original model but makes the first derivative of the rate equa-
tion continuous, required to achieve good convergence when integrated with a fully implicit
method. This approximation also improves the numerics of the model as a whole when used
in CPFE simulations.
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Variable Scale factor Scaled units
Ld 10−9 nm
f 0.1 No simple unit
r 10−9 nm
N 1012 Parts per trillion

Table 2.4: Scaling factors for the internal variables.

The second change is that the dislocation spacing and precipitate radius, number density,
and volume fraction equation values are all scaled by dividing by a scale factor to improve the
numerics of the model by making the values of the internal variables approximately equal.
Essentially all this does is change the units used in tracking the internal variables. However,
the NEML implementation does this internally, so that the user can work with the original
unit system presented in the reference material and defined in Tables 2.1-2.3. Table 2.4 lists
the specific scale factors used in the simulations below.

2.3 Verification

To verify the model we ran thermal aging simulations for 316H using the model implemented
in NEML. These simulations are for a single material point representing a single crystal
(orientation does not matter). The simulation holds the stress fixed to zero, the temperature
fixed to one of 550◦, 600◦, or 650◦ C, and integrates the system of ODEs representing the
evolution of the internal state through time, out to 107 hours. The chemical concentrations
of C, Cr, and Mo and the radius, number density, and volume fraction of the carbide and
Laves phases evolve with time, along with the total precipitate obstacle spacing. We can
compare these values to the information plotted in [21], which presents the results of similar
thermal aging simulations.

Figures 2.1-2.3 show the results for all three temperatures. The chemical concentration
in the solid solution agree nearly exactly with the results presented in [21], with the only
difference occurring near the transition to the equilibrium concentration. The modification
described above, i.e. mixing the growth and ripening rates, explains this small difference.
There are somewhat larger differences in the carbide and Laves phase volume fraction and
area density results. These are partly attributable to the modifications to the numerical
implementation of the model but also likely due to differences in how we integrate the rate
equations (implicit here versus explicit in the original paper). All these small differences
contribute to produce a somewhat different precipitate spacing versus time relation, which is
what feeds into the slip system hardening. However, our implementation produces the same
basic curve, just scaled to reflect the implementation differences. Overall, these differences
do not end up producing a significantly different physical response, i.e. the thermally-aged
flow curve simulated by embedding the model in a homogenized or full field crystal plasticity
simulation.
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Figure 2.1: Comparison between NEML implementation and [21] results for thermal aging
at T = 550◦ C.
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Figure 2.2: Comparison between NEML implementation and [21] results for thermal aging
at T = 600◦ C.
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Figure 2.3: Comparison between NEML implementation and [21] results for thermal aging
at T = 650◦ C.
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Figure 2.4: Unaged tension response of the Hu and Cocks model.
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Figure 2.5: Aged tension response of the Hu and Cocks model. The solid lines are the unaged
response, the dashed lines are the response after aging 100,000 hours at the test temperature.

2.4 Macroscale examples

This section illustrates the macroscale response of the model using polycrystal simulations.
These simulations all homogenize the model response to average macroscale behavior with
Taylor-homogenized simulations of 100 randomly selected crystal orientations.

Figure 2.4 shows the unaged tension model response by simulating a standard tensile test
with a strain rate of 8.33×10−5 mm/mm/s at temperatures of 500◦, 550◦, 600◦, and 650◦ C.
The model response is reasonable for 316H at these temperatures, including both the initial
yield stress and work hardening.

Figure 2.5 then repeats these tension test simulations but now after first aging the ma-
terial for 100,000 hours at the test temperature. The figure compares the unaged and aged
tensile response. Thermal aging does not significantly affect the flow stress of 316H for
these conditions, which is as expected based on the experimentally-observed response of the
material.
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Figure 2.6: Simulated creep tests using the Hu and Cocks model.

Finally, Figure 2.6 plots the creep response of the model at 500◦, 550◦, 600◦, and 650◦ C
for a stress level of 40 MPa. Again, this figure illustrates that the model performs reasonably
compared to the real material response at these conditions.

Overall, these results demonstrate the model is ready for use in CPFE calculations. How-
ever, as described in Chapter 1, we started the CPFE throughput simulations in parallel with
the development of this new model, using a pre-existing model form already implemented in
the CPFE framework.
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3 CPFEM model and throughput simulation database

This chapter describes a campaign of throughput crystal plasticity (CP) simulations, which
in turn feed into the physics-based model for extrapolating creep rupture described Chap-
ter 4. Crystal plasticity simulations were performed on a 100-grain representative volume
element (RVE) to simulate creep. The simulations were performed to generate a database
of creep rupture times for 316H steel for a temperature of 600◦ C. The input parameters
for the CP model were varied about a baseline value; the baseline parameters values were
established by comparing the model creep response to experimental creep curves. For these
simulations, standard Voce-type saturation laws are used to model the hardening response
of grain interiors and the grain boundary cavitation model developed in an earlier study [25]
is used to model the grain boundary deformation. The throughput simulation grid varies
six parameters, selected based on past sensitivity studies, specially three grain boundary
parameters (a0, b0 and DGB) for the grain boundaries and three Voce hardening parameters
(τsat, τ0 and b) for the grain bulk.

3.1 Simulation setup

A 100-grain RVE microstructure was used as the input microstructure for all the simulations.
Six crystal plasticity parameters are varied about their baselines values, as shown in Table
3.1, to sample the variation in the creep rupture life caused by heat-to-heat microstructural
variations in the material. Figure 3.1 shows the microstructure and the loading conditions
used in these simulations. The baseline parameters are used as input to the CP model,
and after confirmation that the resulting creep curves are comparable to the corresponding
experimental creep curves, the parameters are varied and subsequent throughput simulations
are performed. The creep curves are generated for 5 different stress levels: 20 MPa, 50 MPa,
100 MPa, 150 MP and 200 MPa, and at 600 ◦C. Figure 3.2 shows plots of strain and strain
rates for the 100 MPa input stress case. The simulated creep curves are generally centered
on the experimental curves but the range of results in the throughput simulation database
span a few orders of magnitude in either direction of the experiments. This variation is
much wider than what we expect for actual heat-to-heat variations in 316H. Running the
simulations to cover a wider range of parameter space than what we will actually use in
predicting rupture ensures that a surrogate model, trained against this data, can capture at
least the full range of responses needed to explain the real heat-to-heat variation.

Table 3.1: The crystal plasticity model parameters varied in the throughput simulations to
generate a database of creep rupture data.

Symbol Description Value and Units

a0 initial cavity half radius 5× 10−5 ± 50% mm2

b0 initial cavity half spacing 0.06± 50% mm2

DGB GB diffusion coefficient 1× 10−15 ± 50% mm3/MPa.h
τsat Isotropic saturation 12± 50% MPa
τ0 Isotropic initial value 40± 50% MPa
b Voce hardening pre-factor 66.66± 50% unitless
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(a) (b)

Figure 3.1: (a) The 100-grain microstructure used for all the simulations to generate the
database of creep rupture times. (b) The loading conditions imposed on the microstructure.

(a) (b)

Figure 3.2: Distribution of creep (a) strain and (b) strain rate curves from the different
throughput simulations, compared with the experimental creep curve for the same loading
conditions. These curves are all for a stress of 100 MPa.
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3.2 Analysis

The simulations produce full creep curves as well as the detailed microstructural state of
the material as a function of time. From these results we calculate a surrogate for the
creep rupture time to produce a database linking the stress and the six key microstructural
parameters to the resulting time to rupture. To account for the large variations in the
behavior across the parameter space and different stress levels, the creep rupture time is
calculated as the time required for creep cavitation to increase the simulation cell volume
by a factor of 0.01. First, the volume increase due to elasticity is subtracted from the total
change in volume. Since the creep load begins at t = 0.1hrs, all volume change before that
is attributed to elasticity and ignored. Then, the time corresponding to a volume increase
of 0.01 is assigned as the creep rupture time. Two examples are shown in Figure 3.3, which
illustrate the calculation of the creep rupture times as an increase in the excess volume of the
microstructure. These two cases represent brittle and ductile creep failure. A relatively low
threshold of 0.01 is used for the increase in excess volume to account for the large variation
in the creep behavior across different stress values and input microstructural parameters. In
some cases, we do not reach the chosen threshold within the simulated time frame, ands o
we do not include these simulations in the subsequent analyses.

The rational behind this surrogate measure of rupture is to avoid attempting to define
a definite rupture time by pulling the simulation volume in half. The simulation results
become very sensitive to the details of the numerical implementation of the grain boundary
and grain bulk constitutive models near the end of life when tertiary creep causes large
creep strain rates and accumulated strains. This sensitivity makes it difficult to assign
a consistent time-to-failure to a wide range of simulations. As the failure mechanism in
these simulations is grain boundary cavitation, an increase in volume due to cavity growth
is a reasonable surrogate for damage. More importantly, this surrogate measure respects
the differences between microstructural parameters causing a creep brittle response versus
parameters causing a creep ductile response. In effect, the cavitation measure is a reasonable
way to indicate failure that does not limit the available creep ductility. For more details on
this criterion see [26].
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(a) (b)

Figure 3.3: Calculation of the increase in the excess volume (after elasticity) for (a) brittle
creep failure and (b) ductile creep failure cases.
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4 Bayesian inference model and long-term predictions of creep rupture

This chapter describes the process of taking the results of the CPFE throughput simulations
described in Chapter 3, using actual, short-term creep rupture test data on 316H to infer
a statistical model for the creep rupture life of the material, and then using this statistical
model to predict the long-term creep rupture strength of the material. As described in the
introduction, because long-term rupture test data is available for 316H steel we can then
evaluate the accuracy of this approach against actual test data. This chapter additionally
compares the accuracy of the extrapolated model against a Larson-Miller model, assessing
our new physics-based approach to the current, empirical methods used to qualify materials.

For the example here we use creep rupture data for 316H at 600◦ C. We selected this
temperature because it represents a realistic operating temperature for future advanced
reactor components and because the existing rupture database has a large number of tests
at this temperature, including tests with rupture times greater than 200,000 hours. The
results here train the final model using the portion of the rupture database with failure
times less than 15,000 hours (less than 2 years) to evaluate the accuracy of the approach in
extrapolating based on a short-term, accelerated test program.

4.1 Surrogate modeling

The overall goal of the modeling work (see Fig. 1.3) is to use Bayesian inference to find the
distributions of the physical, microstructural parameters input to the CPFE model that ex-
plain the resulting distribution of actual creep rupture data. However, the CPFE framework
is too numerically expensive to use directly in the inference process. Instead, as described
in the previous chapter, we assembled a large throughput simulation data of CPFE results.
This throughput database covers the stress range of interest for practical component designs
as well as sampling a wide range of the parameter space for the six key microstructural
parameters. The database maps these seven parameters to the resulting simulated critical
cavitation time, a surrogate for time to rupture under creep conditions.

The goal here is to fit a surrogate model to this data to replace the CPFE model in the
inference process. This model should have the same input/output as the CPFE results, i.e.
it maps the stress and the six microstructural parameters to the critical cavitation time, but
needs to be much less computationally expensive than a direct CPFE calculation.

The total database includes the results of 1651 calculations. Before fitting a surrogate
model we culled the CPFE database to eliminate failed or unreliable simulations results.
Some simulations did not reach the critical void fraction over physical time allocated for
the simulation. We eliminated these from the database, leaving 1607 simulations. We then
culled all the simulation data with predicted critical cavitation times greater then 900,000
hours. There are two reasons to remove these data:

1. They are unnecessary as there is no real need to predict rupture times of this length —
it is very unlikely that any component in a future reactor will operate for times greater
than 100 years, which is approximately 900,000 hours.

2. Some of the simulations for very low stress conditions, i.e. very long rupture times,
produced anomalous creep curves where creep deformation essentially stopped for long
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Figure 4.1: Summary histogram of the dataset after filtering.

periods of time. Likely this is a numerical issue related to the order of magnitude of the
resulting creep rates: very low stress values produce very slow creep rates, which tend
to fall below the integration tolerances used by default in the CPFE calculations. This
could, at least potentially, be rectified either by adjusting the integration tolerances or
by switching the units of the calculations from seconds to hours. However, given that
these long times are not very relevant to engineering design we feel justified in simply
excluding these data.

Figure 4.1 summarizes the dataset after filtering. The plot shows a histogram of the
number of points at each temperature and the resulting time to failure. Culling the dataset
as described above most affects the 20 MPa stress simulations, as these generally have the
longest rupture time. The dataset still contains 1340 simulations after culling the long
rupture time data.

We used a deep neural network trained to this data as a surrogate model to replace
direct CPFE simulation. The network has an input depth of 7, i.e. the stress plus the 6
microstructural parameters. It has two intermediate layers of size 10 and 5 and an output
size of 1 (i.e. the critical cavitation time). The network applies an ReLU activation function
at each layer. We implement the model and the calibration process in the pytorch [27]
framework.

In training the model we first randomly split the filtered dataset into training and test
sets. Specifically, the process randomly selects 10% of the data to be in the test set and the
remaining 90% for the training set. We use pytorch to train the neural network parameters
against the data using the Adam gradient-descent [28] optimizer with a learning rate of
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Figure 4.2: Typical training history for fitting the surrogate model to the CPFE data.

5× 10−4 over 15,000 iterations.

Before training we first take the base-10 logarithm of the stress (input) and the rupture
time (output data). Moreover, we shift and scale the input data, both the stress and the
microstructural parameters, so that they are centered about zero and have a scale of 1. The
loss function is the mean squared error between the surrogate model predictions and the
actual CPFE time to rupture. Arguably, a relative error measure might perform somewhat
better as the mean squared error tends to weigh the longer rupture data more than sim-
ulations with short simulated rupture times. However, taking the log of the times before
training minimizes this effect and the final model performs adequately well for all rupture
times.

Because the initial values of the neural network weights and biases are random the final
model is somewhat stochastic. A section below describes the variation in the final results
for multiple repetitions of the entire process described in this chapter. Figure 4.2 plots the
convergence history of the training process, which is representative of any repetition of the
surrogate model calibration process.

Figure 4.3 illustrates the accurate of the model by plotting the surrogate model versus
CPFE rupture time for the reserved test dataset. The results, as well as the actual error cal-
culated over the reserved data, show that the model is generally accurate. Using the reserved
test demonstrates that the training process is robust against overfitting. The surrogate is
generally quite accurate and, moreover, the error between the surrogate model and the test
data concentrates at very long rupture times, which are not relevant for realistic component
designs.
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Figure 4.3: Plot comparing the surrogate-predicted and actual CPFE rupture times, using
the reserved test data.

4.2 Bayesian inference

The surrogate model provides a rapid means to map the stress and microstructural param-
eters to the CPFE-predicted rupture time:

tR = f (σ,m;p) (4.1)

where m is the vector of the six microstructural parameters and p are the neural network
parameters, trained against the CPFE data.

The goal of the inference is to find the distribution of the microstructural parameters
that predicts the distribution in creep rupture life over the short-term test database. Math-
ematically,

TR = f (σ,M) (4.2)

where TR and M are now random variables but σ remains deterministic. More importantly,
the internal neural network parameters are not included in the inference process. They re-
mained fixed, deterministic parameters set to the values determined by the surrogate model-
ing fit against the CPFE data. This approach in effect replaces the CPFE simulations with
the surrogate model for determining the microstructural parameter distributions using the
actual rupture data. By keeping the internal surrogate parameters the same, we are in effect
fixing the functional form of the model to match the physics-based CPFE simulations. An
alternative approach using a Bayesian neural network would find probability distributions
for these internal parameters based on the actual data. This process would lose the informa-
tion encoded in the CPFE results. Because we retain the network structure unaltered and
only infer the microstructural parameter distributions our final Bayesian model is physically
based – constrained to behave as if we are inferring microstructural parameter distributions
directly through the CPFE calculations.
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The statistical model used here also accounts for random experimental and measurement
variations by including a white noise term:

TR = f (σ,M) + ε (4.3)

where ε is Gaussian noise with zero mean. This noise term accounts for variations that
cannot be modeled as heat-to-heat microstructural variations, e.g. variation in the rupture
life for samples from the same heat. These types of variations are common in creep tests.

We use a large collection of 316H rupture data to calibrate the statistical model [20].
For the example here, we set a tlimit = 15, 000 hours, of somewhat less than 2 years. The
inference process includes all the data with rupture times less than this limit. After inferring
the model we can then compare the extrapolated predictions of creep rupture time against
the data with rupture times greater than tlimit. At a temperature of T = 600◦ C the rupture
database contains 367 tests. For a limit of 15,000 hours there are 286 tests with rupture
times less than the limit and 81 tests with rupture times greater than the limit.

We use the variational Bayes inference method [19] as implemented in the Pyro python
library [29]. The complete details of the method are contained in these references. The
objective of the approach is the same as for any Bayesian inference approach: to estimate
the posterior distribution of the model parameters that best explains the data. As with
other inference techniques, like Markov Chain Monte Carlo (MCMC), a set of prior distri-
butions provided by the user informs the inference method by providing the best available
information on each parameter distribution. Unlike MCMC approaches, variational Bayesian
techniques approximate the posterior distribution with some parameterized, analytical prob-
ability distribution. In pyro this distribution is called the guide. The inference approach then
optimizes the variables parametrizing this guide distribution to best explain the experimental
data. Specifically, pyro maximizes the evidence lower bound (ELBO).

We structure the statistical model as a hierarchical, pooled description of the heat-to-
heat variation of interest here (Fig. 4.4a). First, the model samples two random variables for
each of the six microstructural parameters. These “top-level” random variables represent the
location and scale of the parameter distributions describing variation over randomly selected
heats of material. Then, for each experiment, the model samples the actual microstructural
parameters from the distributions described by the top-level variables. This two-level model
exactly describes heat-to-heat variation under the assumption that each experimental sample
is drawn from a random heat. This process could be improved if batch information was
available for each test by instead sampling the top-level parameter distributions once for
each heat of material, instead of once for each sample, and simulating the rupture time for
all samples in the same heat using the same set of heat-specific microstructural parameters
(Fig. 4.4b).

For variational Bayes techniques the user must provide then both the prior distributions
and the form of the guide distribution used to approximate the posterior distribution. We
use a normal prior for the top-level random variables describing the parameter locations and
a half normal prior for the top-level random variables describing the parameter scales. As the
parameters of the physics-based model all have a physical meaning, these prior distributions
would ideally be informed by microstructural characterization. However, for now we set the
mean of these distributions to the average of the parameter grid used to run the throughput
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Figure 4.4: Figure illustrating the concept of a hierarchical, pooled model to capture heat-
to-heat variation in the model microstructural parameters.

calculations. This represents some slight information, as we ensured that these average
parameter values produced reasonable, if not calibrated, creep curves for 316H We set the
standard deviation of the top-level location priors as well as the standard deviation of the
half normal priors describing the distribution variance and the white noise to 0.2. This is
mostly uninformative, set just to be larger than the actual variance of the true posterior
distributions. This reflects our observation that variational Bayesian methods, at least as
implemented in pyro, are much better at narrowing a wide prior than they are at broadening
a narrow prior.

We use a delta distribution for the guide distributions corresponding to the top-level
random variables describing the heat-to-heat microstructural parameter distributions. This
means that the method will not find the distribution of these top-level parameters but instead
a pointwise maximum a posterori (MAP) estimate of the parameter distribution locations
and scales. In other words, setting up the inference model this way provides a point estimate
of the location and scale of the microstructural parameter distributions. This is precisely
what we want. The MAP estimate is still regularized by the prior information and so this
approach combines the best of a Bayesian framework with the goal of finding point estimates
of the metaparameters describing the heat-to-heat parameter variations.

Figure 4.5 shows a typical training history using the Adam optimizer [28] with a learning
rate of 5×10−4. A good amount of the complexity of the underlying the pyro implementation
of variational Bayesian inference is setting up the problem to provide an unbiased, low
variance estimate of the gradient of the loss with respect to the guide parameters [30]. The
loss function is now by definition stochastic as evaluating the ELBO involves sampling the
heat-to-heat distributions for each experiment. We draw four Monte Carlo samples each
iteration to minimize the effects of random sampling, and despite this variation on average
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Figure 4.5: Typical loss history for the inference optimization process.

the loss decreases each iteration to a minimum.
Figure 4.6 plots the normalized heat-to-heat parameter posterior distributions for one

repetition of this inference process. The parameters are normalized so that the prior mean is
zero. The inference process considerably narrows the variance of the parameter distributions
compared to the priors and shifts the means somewhat to match the experimental data.
Without better prior information there is no real guarantee that the inferred microstructural
parameter distributions match the actual material. All we can say is that the resulting
microstructural parameter distributions are physically reasonable.

Figure 4.7 summarizes the key results of the study – predicting the distribution of the
long-term creep rupture strength of 316H using only short term data. This plot compares
the data, the physics-based Bayesian model described here, and a linear Larson-Miller cor-
relation, fit using the same data available to the inference model. Specifically, this plot
shows:

1. The experimental data used to calibrate the models.

2. The long-term experimental data not included in the model calibration.

3. The mean predicted life for the Bayesian model and the linear Larson-Miller model.

4. A 95% prediction interval for both models.

Already this plot demonstrates that the physics-based model can capture long-term be-
havior the empirical model cannot capture. The inference model correctly predicts a shift in
the slope of the rupture correlation for both the very short-term/high-stress data (included
in the training data) and, critically, for the long-term extrapolation predictions. These
mechanism shifts reflect the underlying physical behavior of the material, likely the effect
of substantial dislocation hardening for the high stress tests (where the creep test stress
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Figure 4.6: Example normalized posterior distributions for the microstructural parameters
inferred from the short-term rupture data.
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Figure 4.7: Comparison between experimental data, the physics-based model, and a linear
Larson-Miller model, plotting predicted rupture time as a function of the applied stress.
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is greater than the material yield stress) and a shift towards diffusional creep mechanisms
for the long-term predictions. The physics-based model extrapolation predictions are more
accurate than the empirical Larson-Miller model, both in terms of the mean trend lines and
in how many of the actual experimental rupture times were captured by the 95% prediction
bound.

4.3 Assessing the results

One drawback of the physics-based Bayesian model is that the results of the complete process
going from CPFE data to inferred statistical model are somewhat non-deterministic. This
random variation arises from several sources:

1. The initial split of the CPFE data into the training and test sets is random.

2. The optimization process for fitting the surrogate model starts from random initial
network scale and bias parameters.

3. The variational Bayesian inference process is itself stochastic. The initial guide param-
eter values are sampled randomly from the priors and the loss function and gradient
themselves are stochastic.

As such, to evaluate the model accurately we repeated the entire process, from CPFE
data all the way to extrapolated rupture time predictions, 10 times. The objective of this
work is to predict long-term creep failure based on short-term data and so we focus on
two error metrics assessing the models against the long-term creep data excluded from the
training database:

1. The mean absolute relative error between the average model prediction and the actual
rupture data.

2. The number of points in the prediction region that actually fall inside the model 95%
prediction bound.

The first metric assesses the general accuracy of the approach. The second metric would be
crucial for developing design material properties, as these are typically based on a minimum,
lower-bound (often indeed a 95% interval) on experimental measures. Table 4.1 summarizes
the results for the inference model and both a linear and quadratic Larson-Miller correlation.
The Larson-Miller results are deterministic – there is no random element in fitting these
models. The table provides both the mean metrics over 10 repetitions of the complete process
for developing the physics-based model as well as the maximum and minimum values from
all 10 repeats. This interval provides a sense for how repeatable the results are as well as
how safe it would be to make predictions based on a single instantiation of the model.

In all cases and for both the mean relative errors and % correctly predicted within the
95% prediction interval the physics-based Bayesian model outperforms the empirical linear
and quadratic Larson-Miller extrapolations. While the error metrics do vary somewhat for
multiple repetitions of the calibration process, the variation is not significant. A perfect
model for developing design values of creep rupture strength would correctly predict the
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Mean relative error Within 95% interval
Linear Larson-Miller 10.2% 83.9%

Quadratic Larson-Miller 11.9% 77.8%

Physics-based
Min 6.4% 87.6%

Mean 8.2% 90.0%
Max 9.6% 91.4%

Table 4.1: Comparison of the accuracy of the physically-based Bayesian model as well as
linear and quadratic Larson-Miller correlations in extrapolating long-term creep rupture
data based on short-term data. For the Bayesian model, the table shows results from 10
repetitions of the complete process.
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Figure 4.8: Relative error versus long term, t > 100, 000 test data for the physics-based
model with different values of tlimit (i.e. the longest duration creep test kept in the inference
database.

true 95% interval on the long-term data. However, even conventional Larson-Miller models
calibrated against long-term experiments meet this criteria when extrapolating. Determin-
ing whether the approximate 90% accuracy is sufficient will at least partly be a matter of
engineering judgement, although future analysis may compare the accuracy of Larson-Miller
models calibrated over the complete, long-term database to extrapolated predictions with the
physics-based model to provide some insight into what level of accuracy should be expected.

Finally, we can use this model to examine the acceptable extrapolation factor: what
length of creep rupture data is needed to correctly predict long-term rupture strength on
the order of the design lives of future components. Figure 4.8 plots the accuracy of the
physics-based model in predicting the rupture life for the very long-term data with actual,
experimental rupture times greater than 100,000 hours (about 11 years, 6 data points) as a
function of the time limit tlimit. That is, this study examines the accuracy of the model for
different time extrapolation factors. This plot only shows the mean absolute relative error
as there are insufficient data points to meaningfully compare to a prediction interval. For
the physics-based model, the plot shows the error metric averaged over five repetitions of
the model calibration process to minimize the differences between runs.
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The figure demonstrates that the long-term property predictions remain accurate even if
the test database only spans 5,000 to 10,000 hours. This suggests the new approach developed
here can accurately predict long-term creep rupture for realistic component design lives of
greater than 100,000 hours based on creep test data with maximum durations of less than
one year.

ANL-21/34 35





An initial framework for the rapid qualification of long-term creep rupture strength via microstructural

modeling
September 2021

5 Conclusions and future work

5.1 Summary

This report describes the development and testing of a new extrapolation method for time-
dependent material properties aimed at accelerating the qualification of new materials by re-
ducing the length of the test program required to accurately extrapolate key time-dependent
material properties out to expected 30 or 60 year component design lives. While many fac-
tors contribute to the amount of time required to qualify a new material for nuclear use,
the requirement for a dedicated long-term test program, particularly for high temperature
reactors, is one of the most difficult to overcome.

The method described here uses a physics-based model to predict the creep rupture life
of the material. The report examines two physically-based models for creep deformation
and failure in 316H stainless steel: the Hu and Cocks model and a simpler model developed
at Argonne National Laboratory. We generate a large throughput simulation database with
the simpler model to calculate the expected rupture time for a wide range of stresses and
key microstructural parameters.

The key concept described in this report is using Bayesian inference to then calibrate this
physics-based model against short-term creep test data. This inference process requires less
model development time, experimental characterization, and computational expense than
a full multiscale approach while at the same time retaining a direct connection between
the model predictions and the underlying microstructural mechanisms. In the context of
Bayesian inference the prior distributions provide a means for incorporating any available
microstructural characterization data into the model. The advantage of the approach is that
where such information is not available the user can provide an uninformed prior and the
inference process will still attempt to find the distribution of microstructural parameters
that best explains the data.

Our hypothesis is that using a physics-based model, even when calibrated against short-
term test data, will better predict the long-term creep rupture strength of the material. We
tested this hypothesis using a large creep rupture database for 316H stainless steel. Because
this already-qualified material has been extensively studied there are actual creep rupture
test data for very long times — greater than 200,000 hours for the conditions considered
in this report. This means we could test the models by providing a short-term subset of
this data for calibration and then testing the resulting predictions against the remaining
long-term data.

This comparison proves our hypothesis: the physics-based model can accurately predict
long-term creep rupture in 316H, even when only provided with a test database for times as
short as 5,000 hours. Moreover, the model performs significantly better when extrapolating
than the conventional, empirical approach using Larson-Miller extrapolation. Widespread
adoption of this new approach for extrapolating time-dependent material properties could
accelerate the qualification of new materials by providing a much greater extrapolation fac-
tor, i.e. the ratio between the qualified material life and the longest required test. Even if
this method does not completely replace the more conventional time-temperature parameter
correlation it could be used to support staggered qualification programs by providing de-
signers accurate, long-term predictions of key material properties for the component design
based only on limited, short-term test data.
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5.2 Future work

Our original plan was to use the Hu and Cocks model to generate the simulation database. To
save time we proceeded in parallel implementing the new Hu and Cocks model and generating
the simulation database using an existing model. While the results here demonstrate that
the simple model was sufficiently accurate, the Hu and Cocks model better connects to
observable microstructural parameters like the material chemistry, carbide distribution, etc.
Repeating the process developed here using the Hu and Cocks model would yield a model
that is easier to connect to characterization data via the parameter prior distributions. In
turn, these informed priors would produce more accurate posterior parameter distributions
and, potentially, could further improve the extrapolation results.

The general strategy developed here could be applied to other time dependent material
properties like thermal aging, creep-fatigue, and even irradiation and environmental damage
provided physics-based models for these behaviors can be developed. Thermal aging would
be a very easy next target, as the Hu and Cocks model, or similar models for other materials,
already predicts thermal aging along with creep.

Additional work could improve the repeatability of the process, mostly by examining the
hyperparameters controlling the surrogate model training and inference processes. While the
repeat variation in the example detailed in this report is acceptable, for material qualification
codes and standards bodies may prefer a more repeatable process. However, the model
calibration process will never be fully deterministic as the inference process will always
remain stochastic.

In the longer term, relying on physics-based models means needing to develop a model
for each substantially different material with significantly different deformation and damage
mechanisms. While some model reuse is possible, for example between related materials of
similar types, each substantially new material will require a new model. The time and cost of
the research program to develop a new physics-based model, particularly one calibrated as de-
scribed here, will not limit rapid material qualification as much as a long-term test program,
but it does represent a cost that could potentially be reduced. Integrating the Bayesian in-
ference, surrogate modeling, and CPFE simulations into a single step using physics-informed
machine learning might simplify the process of developing a new physics-based model. The
idea would be to develop a “library” of mechanism models relating measurable microstruc-
tural parameters to creep deformation and failure. This library would include mechanisms
relevant to a wide variety of material systems, not just the single material under consider-
ation. These mechanism models could be combined with either full field CPFE simulations
or homogenized calculations to predict creep rupture or other long-term material behavior.
Machine learning techniques could then be used to both down-select material mechanisms to
only those that well-explain the creep rupture data and infer the resulting parameter distri-
butions all in one step. Developing a modeling framework of this type could greatly reduce
the time to develop a new physics-based model by leaving decisions on which mechanisms
to include to the machine. However, it will require advances both in basic computational
modeling to provide fast simulation results and in machine learning techniques to regularize
the models in order to achieve.
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